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Shell Effects in Small Metal Particles 
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By assuming periodic discrete electronic spectra, the properties of small metal 
particles are analyzed. The canonical partition function is obtained exactly. 
The heat capacity and the electronic magnetic susceptibility are calculated in 
the presence of a static magnetic field. These results are an extension of the 
calculations for an equally spaced spectrum. Preliminary considerations of the 
statistical theory of spectra are included. 
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1. INTRODUCTION 

Atomic  clusters or sufficiently small  meta l  particles are physical  systems 
which can be studied using discrete single-particle spectra on which fer- 
mions or  bosons are distr ibuted.  ~1"2~ General ly,  a large (but  finite) number  
of delocalized electrons is assumed to move in a finite space region. This 
region is given by a cluster or  a "small  part icle" of few up to thousands  of 
a toms or  molecules. In the recent years, methods  of nuclear  physics have 
been appl ied  successfully to these systems (see ref. 3 and contr ibut ions  in 
ref. 4). Both aspects have been considered: the methods  of r andom matrices 
and the shell model.  The former has been appl ied not  only to the level 
spacing dis t r ibut ions  as in nuclear  physics, but  also to the theory of 
conductance in small conductors .  ~51 However,  this impor tan t  and vast field 
will not  be contempla ted  here. Rather,  the second aspect concerning shell 
effects will concern us. 

Electronic shell s tructure in metal  clusters is a field of intensive 
research, c4~ This structure was first repor ted for sodium clusters by Kappes  
et al. ~6~ and Knight  et aL ~7) F o r  a review on the electronic shell s tructure 

Institut ffir Theoretische Physik, Universit/it Karlsruhe, W-7500 Karlsruhe, Germany. 

297 

0022~,715/94/0400-0297507.00/0 ~ 1994 Plenum Publishing Corporation 



298 Anzaldo-Meneses 

in metal clusters see ref. 8. More recently, G6hlich et al. 191 analyzed the 
mass spectrum of Cs,,+,(SO2) clusters with a pulsed dye laser and a time- 
of-flight mass spectrometer. They observed a clear shell structure effect 
manifested as an abrupt increase or decrease of the mass-peak intensity at 
certain "magic" values of n ranging from 58 up to 557 + 5. A simple 
explanation given by G6hlich et al. of the mass spectra is the following. The 
delocalized electrons move freely in the cluster and occupy subshells of 
constant angular momentum. Therefore, the clusters will not appear in the 
mass spectra when one of these subshells is closed and the laser photon 
energy is smaller than the ionization energy. Also, numerical shell model 
calculations have been performed by G6hlich etal. supporting this 
approach. For larger clusters, temperature-dependent shell effects can result 
from the layer packing of the atoms. I'~ 

The arrangement of atoms in a cluster depends on many factors, for 
example, on their preparation and their size. The possible kinds of discrete 
spectra are very diverse and thus a general method is needed to classify 
spectra according to a small number of mathematical quantities. 

Another important similar problem is the study of (isolated) quantum 
dots. These are small regions on semiconductors where the electrons move 
in a potential well of parabolic-like form. Typical radii of a quantum dot 
are of the order of 10 -7  m, containing ten to hundreds of electronsJ l~ 

As early as 1937, Fr6hlich t~2~ considered small metallic particles using 
methods for a bulk metal and studied quantum size effects on the electronic 
specific heat. The most important observation was that the mean spacing 
between levels decreases with increasing particle size. In fact, the average 
level separation 6 near the Fermi level ev is 6 = 2/p(ev), where p(ev) is the 
density of states evaluated at e v. For a system of N conduction electrons 
in a small particle it follows that 6 is of order ev/N. Thus, for a small 
metallic particle of size of order 10 8 m and containing about 105 conduction 
electrons it would correspond to 6 ~ 0.1 meV or equivalently a temperature 
of 6/kB ~ 1 K. Fr6hlich considered a constant single-particle spectrum, but 
Kubo ~,31 replaced it by a random spectrum (with Poisson spacings distribu- 
tion). Kubo included additionally the important distinction between an 
even and an odd number of electrons, first noted by Greenwood et al. ~4~ 
Finally, Gor 'kov and Eliashberg ~'5~ pointed out the possibility of using the 
more general distributions used in nuclear physics. These considerations 
are of importance for the low-temperature behavior of the specific heat 
averaged over the size and shape distributions of all particles in a sample. 

But here our point of view departs toward the study of general single- 
particle spectra and the degree of "bunching" of the single-particle levels 
into shells. These aspects are necessary to understand the mass spectra of 
clusters and phenomena such as the density of excited states of individual 



Shell Effects in Small Metal Particles 299 

clusters or also of colloids, gases, and plasmas containing them. We remark 
that the basic assumption in the nuclear case and in the metal particle case 
is the existence of an average potential well. In this well, the fermions are 
considered to move essentially as free particles. 

The simplest way to take into account shell effects is to assume a peri- 
odic spectrum. As we shall show, this makes it possible to obtain explicit 
analytic results. This is important for the understanding of experimental 
results by means of simple phenomenological formulas, instead of involved 
computer calculations. Of course, in realistic physical models the single- 
particle spectra are far from being periodic. However, if we are only inter- 
ested in the excited system not very far from the Fermi level, it becomes 
reasonable to consider an average constant level spacing. The width of the 
shell and the distribution of its levels are arbitrary but fixed quantities. The 
associated parameters could be used to mimic, for example, residual inter- 
actions, deformation of the cavities, etc. The validity of this approximation 
is supported by its extensive use in nuclear physics applications. 1~6) In 
problems connected with nuclear reactions, the estimation of the nuclear 
level density is essential. This quantity is usually calculated assuming a con- 
stant single-particle level density. The underlying combinatorial problem is 
in large part responsible for the importance of the average single-particle 
level density at the Fermi level and for the exponential increase of the 
nuclear level density. Shell effects and pairing correlation contributions are 
included phenomenologically, motivated in part by analytical studies based 
on periodic spectra. We expect that the analytic results of this work can be 
applied to find simple formulas for the description of thermodynamic 
properties of metal clusters. In nuclear physics calculations with realistic 
shell models there is no unique average potential. There is rather a class of 
potentials which are able to reproduce experimental data. This fact is an 
additional motivation to study the simplest possible spectra to distinguish 
which effects result from nonperiodic spectra. 

An important difference between nuclei and metal clusters involves the 
ionic cores. It is a very difficult task to show for which concrete systems it 
is appropriate to reduce the influence of the ionic cores to an average 
smooth potential in the cluster. (~7) For this approximation to be reasonable 
it is necessary to have a weak effective electron-ion potential, considering 
therefore the valence electrons as delocalized. Many calculations using the 
jellium model as well as suitably parametrized potentials ~7~ show that for 
alkali metal clusters with up to 3000 atoms, the picture of valence electrons 
in a smooth potential is very adequate. There will be certainly many 
clusters for which this approximation cannot be applied, but the study of 
this problem is beyond the objective of this work. 

In Section 2 the exact canonical partition function is obtained for 
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arbitrary periodic spectra. The shell structure effects are shown. In 
Section 3 the density of electronic states of the clusters is considered and an 
asymptotic formula is given. The transformation properties under modular 
substitutions are also addressed in this section. In Section 4 the electronic 
heat capacity and the electronic magnetic susceptibility for a system in a 
static magnetic field are considered. Preliminary considerations of statisti- 
cal level spacing distributions of the single-particle levels in a shell are 
presented in Section 5. The conclusions of this work are given in Section 6. 

2. THE CANONICAL PARTITION FUNCTION 

Denton et aL, (is) based on the studies of Fr6hlich and Kubo, 
considered a system of N electrons in a magnetic field H allocated in a 
single-particle spectrum with energy levels e,,. To calculate the heat capacity 
and the spin susceptibility they studied the canonical partition function 

1 fc y-U-1 1 (1) Q(N, fl) = ~-~ i dy I"l [ l + y e x p ( s h - ~ t , , ) ] ,  f l = k B T  
, ' 1 = 0  

S =  _+1 

where y=exp(fl/~) is the fugacity and h=flgl~aH/2. The integration 
contour C encloses the origin. The ground state energy is given by 

f - I  

Eo(N) = 2 ~ ~,, + x~r (2) 
n =  J 

Here, ~r is the topmost occupied level and contains x =  1 or 2 electrons. 
Denton et aL considered the constant spectrum studied by Fr6hlich and 
showed that Q(N, [3) can be given in a closed form for/~(~r-  to) ~> I using 
Jacobi theta functions. But the most important part and goal of their 
calculation was to study the low-temperature behavior of the specific heat 
and the magnetic susceptibility by averaging single-particle level spacings. 
They followed the statistical description of the random matrix models of 
nuclear physics. Since they were not interested in shell structure effects, 
they analyzed only the constant single-particle spectrum. 

We will generalize now the result of Denton et al. for the canonical 
partition function. Instead of a constant single-particle spectrum (with only 
twofold degenerate levels) we consider now a periodic single-particle spec- 
trum. The single-particle energy levels are given as e,q = 6(n + vj), n = O, 1,..., 
j = I ..... e, where e is the degeneracy of each shell and 6 the spacing between 
adjacent shells. For the single-particle partition function it follows that 

1 ~ e x p [ - ~ s ( 1 - v j ) ]  (3) Z ( s ) =  ~ e x p [ - 6 s ( n + v j ) ] - e ~ , _ l j  
j = l  n>~O "= ! 
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and using the Bernoulli polynomials B,,(t) defined by 

2 e  zt 7. n 
= ~. -S; B,,(t), Izl < 2rt 

1 e -  g / :  
n > ~ o  

(4) 

one finds 

S n -  1 i O  ~ Z(s ) =  ~. --~. B . ( l - v j ) =  dte-S'g(t) 
j = l  n~>O " 

(5) 

Here g(t) will be called the single-particle level density and is defined by 

g(t) = e/6 + ~ ~. 6*r vj) 6~k'(t)/k! (6) 
j = l  n > ~ 0  

where ((s, a) = Z (n + a)-'~, n >/0, is the Hurwitz (-function. The first term 
is the usual smooth single-particle level density e/& The smooth ground- 
state energy can be calculated using 

= dt g(t) t, N =  dt g(t) (7) 

which yield 

Eo egv e e 
- - =  (<vZ>-- <v> 2) and 
6 2 12 2 

N = e g v + ; -  ( v )  e (8a) 

where (v 2) = Z v~/e and ( v )  = Z vi/e. Therefore 

/~o N2 N e e 
--6-= 2e 2 ~ - - ~ + N ( v ) - 2  ( ( v 2 ) - ( v ) 2 )  (8b) 

But the exact ground-state energy is 

Eo N 2 N e .,-e 
6 - 2e 2 I - ~ x ( l - x ) +  ~ v j + ( N - x e ) ( v >  (9) 

j = l  

Here x ~ [0, 1 ] is the filled fraction of the last shell in the ground state. The 
exact minus the 'smooth ground-state energies lead therefore to a shell 
effect given as 

Eshe,(0 ) e x(1 - -x)  e ~. e 6 2 - - -~+ ( v j - - ( v ) ) + ~ ( ( v 2 ) - - ( v )  z) (10) 
j = l  
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Let us write now for a system of N electrons the grand canonical 
partition function Z(ct, fl) in terms of the canonical partition function 
Q(N, fl): 

Z(oqf l )=f l  l-I (l+ye-lJa"-I~'S"g=~Q(N, fl) Y N, y= e  = (11) 
j = l  n~>O 

Now, we divide the infinite product  into two parts according to whether 
the single-particle levels are smaller or larger than the topmost  occupied 
energy level e r=  6 ( f +  vs), f integer. After rearranging terms and changing 
the variable y --, (e p'v, it follows that  

e '~' l_ .[ d,.: ,.:-1 . . . . . .  +,,/2 

Q(N' fl)-I-I,,>o (1-e-I~a")e 2xi c 

x (~1/'-e-1~'~"/2+~ -I/'-el~'s''/'-) I-I (1 +(-'e~a';e -pa'') 
j = I m = I 

x [ I  (1 --e-/"a")(1 +~e-I~a"Je-t~a")] (12) 
n > O  l 

where 

Et = f i e f ( f -  1 )/2 + aef (v ) + 6exf + 36e (v )/2 + 6el8, (v) =~, vile 
, i  

Also N = ef + ex, i.e., x is the filled fraction of the last shell. Now, we assume 
thermal degeneracy fl6f> 1 and extend the upper  limit f i n  the finite product  
to infinity. Define q2 = exp(2nir)  = exp( - f16), set ( exp( - fl6v/) = exp(2nizj), 
and look at the infinite product  representation of the Jacobi 3z-function ~91 

oq2(zl r) = 2q 1/6 cos(n:)  r/(r) 1--I (1 + q2"e2~i-)(1 + q2"e- 2~,:) 
n > 0  

where r/(r) is the Dedekind r/-function 

rl(r)=q I/'2 I-I ( l -q2")  = ~ ( -1 )"  q 3''+1/6'2 
n > 0  n ~ J -  

(13a) 

(13b) 

where we used also the infinite-product representation for the Dedekind 

Q(N, fl) exp(--flEl --flbe/24) 1 Ic f l  = ~ - ~ :  ~n/ d ~ ( - I  ...... +e/2 ~92(.~/1 r ) ( 1 4 )  
j = l  

Note that q l / 1 2 / l l ( ' C  ) is a bosonic parti t ion function with q = e x p ( - 6 / 2 k a  T). 
The canonical parti t ion function will read 
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q-function. To integrate the product of theta functions, remember their 
infinite series representation 

~ 2 ( - - [ t )  = ~ q l " - I / 2 1 ~ ' e  1 2 " - l ) n i :  ( 1 5 )  

n ~ Z  

and write 

exp( - f lEI  -- fife~24 + fle< v >) 
Q(N, f l ) -  d~ # 5 - n j _ e x ~  I 

q(t)" ~,,, ......... 1 

(16) 

where the sums are over the ni~7/ and c t j=exp[ - f l6 (n j - l /2 )2 /2  - 
[36njvj]. The integration is now immediate and leads to 

Q(N, ~) = q(t) "exp( - /3E2) 

x z 
{ nl ,.... n~._ I} t < j  

(17) 

The primed sums run over i, j = 1 ..... e -  1 and 

E2 = 6e f ( f  - 1 )/2 + 6ef < v > + 6eft" + 6ex(ex - 1 )/2 + 6e/24 + 6exv,, 

To transform the infinite multiple sum in (17) into known functions, 
consider the following symmetric bilinear form: 

<n, m> = n'-Qm (18) 

where n and m are ( e -1 ) -d imens iona l  vectors and the ( e - 1 ) x  ( e - 1 )  
matrix t-2 has components  g 2 . = 2  and I2ik= 1 for i v~k. Let n and a 
be the ( e -1 ) -d imens iona l  vectors (n~ ..... n,._~) and (a~ ..... a,._l) with 
a~= b - < v > - x ;  it follows that 

�89 + a, n+a> =y "  (n~+a~)+ Z' (nin,+a,aj) 
i < j  

+ 2 ~ ' n i a i +  ~ '  (ainj+niaj) 
i < j 

=.~' ( n ~ + a ~ ) + ~ ' ( v , - v , . - - e x ) n i +  ~ '  (n,ny+aiay) (19) 
i < j  

where we have used 

~"' ( a , n j + n , a j ) = ~ " n j ( ~ ' a , - a , ]  and ai+ E ' a ; = v , - v ~ - e x  
i < j  \ /  
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The only terms in the inner product which are not in the exponential of 
(17) are 

~"aT + ~ ' a , a j = ~ e ( e - 1 ) x 2 - e x ( v ) + ~ ( ( v 2 )  - ( v ) z ) + e x v ~  (20) 

with (v z) = ~ v~/e. But this constant can be allied to the constant E 2 

yielding the final result: 

Q(N, fl) = exp(2xirLTo/'6 ) O..o(OlOr)/n~(r) 
2xiz= --f16, ai= v i -  ( v ) - x  

(21) 

where Eo is precisely the smooth ground-state energy: 

Eo/6 = e ( f  + x + ( v )  - 1/2)-'/2 - e/12 + e(  v )/2 - e(v 2 )/2 (22) 

as computed above [cf. (8b) with N =  e f+  ex]. We introduced further the 
O-function, with characteristics a and b, in e -  1 variables 12~ defined by 

O.,b(Z. l g 2 r ) = ~ e x p D z i ~ ( n + a , n + a ) - - 2 x i ( z + b ) . ( n + a ) ]  , n ~ Z  "-1 

" (23a) 

With relation (21) we have arrived at a closed expression. The most 
interesting mathematical observation is that (for rational a) the canonical 
partition function is given by a modular form ~-'~ with useful transformation 
properties. Physically, the most interesting aspect is the appearance of the 
exponential factor exp(2rtitEo/6) containing only the smooth ground-state 
energy. The dependence on the particle number N is contained only in 
this prefactor. Note also the bosonic partition function l/q"(Q. Since 
-f16 = 2xiz, (21) is given in terms of the inverse of the temperature. 

Introduce now the ~9-function in one variable 9~.~. with characteristics ~ 191 
K = x +  ( v ) -  1/2 and 2 = 0 :  

~.~.(zlv)= Z exp{irt(n+K)2z+27ti(n+K)(z+2)} 

= q I/l:r/(r) exp[xiK2z + 2xiK(z + 2)] 

• 1--I (1 +qZ.+l exp[ -27z i ( z+xz+2)] )  
n ~ Z  

x ( 1 + q2,,+ J e x p [ 2 x i ( z  + ~'r + 2 ) ]  ) 

In part icular,  9 ~/2.o(ZJ ~) = ~2(zl r )  [cf. ( 15)].  

(23b) 
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From ( l l a ) ,  (21), and (22), the grand parti t ion function is 

e- - ]  

Z(ot, fl)=q-4r ~ O.,o(Olt2r)9~.o(ezler) (24a) 
x c  = 0 

where ~ = - e / 2 4  + e ( v ) / 4  - e (v  2 ) /4  and ai = vi - ( v ) - x. 
Further,  note that the assumpt ion of " thermal  degeneracy" flbf>> 1 to 

obtain (14) is equivalent to taking the infinite product  

Z(ct, f l ) = l - ]  ]-I (l+q2"eZ~":+~"'))(l+q 2"+2e-2~":+~''') (24b) 
i=  I n~>0 

as grand canonical parti t ion function. This expression can be now inter- 
preted as the parti t ion function of a system of fermions and antifermions. 
Similar considerations would follow for systems containing bosons and 
antibosons. 

Using now ~9-functions in one variable with characteristics v i -  1/2, it 
follows that 

Z(ot, fl) = q -4r -,.<,, >q -" ( r )  ISI 8,,_ t/z.o(Z [ r) (24c) 
i = 1  

In other words, we found two equivalent expressions for Z(ct, fl). Therefore, 
we arrive at the identity 

I~I e-- ] t'Qv,--l/2, O ( Z I ' [ ' ) =  E O,.o(OlI2r)~.o(ezlez), x = x e + e ( v ) - e / 2  
i = 1 x e  = 0 

(25) 

Using the same method,  we have derived many  other identities which 
include also O-functions of higher levels in several variables. Identities of 
this kind are the result of the underlying ring, structure of the O-functions. 

,..-., . - ('rJ) 
The particular case e = 1 of (21) yields a result by u o u o s m l t  -- : 

Q( N, fl ) = exp( 2niz T?o/ 6 )/r/(z) (26) 

with /~o/6 = f ( f  - I )/2 + 1/24 and ( v ) -- 0. 
The next particular case e = 2 reduces to the result of Denton et al. (18) 

taking here ( v ) = 0 ,  v2= -v~ =gl~aH/26, a = v ~ - - x ,  and the two values 
x = 0, 1/2. The two corresponding relations are 

Q . . . .  = exp [2niT(Eo . . . . .  /6 + g2pZ a H2/46 z)] 

•  for x = 0  (27) 
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with Eo ..... /& = f ( f -  1) + 1/12 - g2/a~H2/462; and 

Qooo = exp[ 27zir( Eo.odJ& + g2p~ H 2/4&2) ] 

•  for x - -1 /2  (28) 

with Eo.odd/& = f 2 _  1/6-- g2p~H2/4&2. Here we have written in the back- 
ground magnetic field dependence in the z argument of the Jacobi 
`9-functions. The `92-function is given by (15) and ,93 by 

`g3(zlr) = ~ q n2 exp(27tinz) (29) 
t~EZ 

3. T R A N S F O R M A T I O N  FORMULAS AND THE 
DENSITY OF EXCITED STATES 

The transformation formulas for the Jacobi `9-functions and the 
Dedekind q-function under the modular substitution r--- - l / r  can be used 
to express Q(N, fl) in the preceding examples in terms of k a T =  -cS/2~zir. 
Explicitly, 

02(z I z) = (i/z) 1/2 e-i=z'-/%qo(Z/Z -- l/z) 

`93(z I r ) =  (i/z) I/2 e-i'~:'-/r`93(Z/Z -- l /r)  

and 

q(z) = (i/r) In ~?( -- l/z) (30) 

The infinite series for the Jacobi `9-functions and the Dedekind 
q-function converge very fast for large Im(r), i.e., for low temperatures. 
Only few terms are needed for a high numerical precision. For this reason, 
the transformation formulas are particularly useful for also computing with 
great accuracy the high-temperature case. 

Also a similar modular transformation holds for the general result 
(21). For the general periodic spectra the needed formula reads 

0 , . o ( 0 1  s  = ( - i z )  II - ,.)/2 It21 - i /2 0 o . , ( 0 1  _ 1 / r - Q )  ( 3 1  ) 

where [f2l denotes the determinant of-(2. In our application If2l = e. 
In many cases, for a given modular form (defined with respect to a 

certain subgroup of the modular group) it is possible to obtain the exact 
Fourier coefficients/23"24~ In other words, from (21) we can assert that (for 
rational vA it is possible to obtain the exact Fourier coefficients of the 
canonical partition function for a system of fermions in a periodic single- 
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particle spectrum. Thus, we have found a way to solve exactly the calcula- 
tion of the cluster level density for (rational) periodic single-particle spectra 
and not too high excitation energies. However, let us remark that the 
explicit calculations depend strongly on the subgroups involved and can 
become very difficult in general. 

For number-theoretic considerations it is convenient to introduce a 
largest unit d to express (if necessary, only approximately) all single- 
particle energies as integer multiples of it. Observe that for the periodic 
spectra {ekj= (k+ %)6} it is not necessarily the case that d =  6 (true only 
for equidistant spectra with periodically degenerate levels). The Fourier 
series of the grand canonical partition function for the system of fermions 
and antifermions [cf. (24b)] reads 

Z(0t, fl)= ~ ~ p(N, U) x"y N, x = e  t~a, ) ,=e  ~ (32) 
N ~ Z  n ~ O  

with coefficients 

1 
p(N, U ) = ~  IcodX lcodY Z(Ot, f l)x . . . .  l y - N -  I (33) 

where the contours Co surround the origins. These coefficients wilt be 
called the cluster level density. It gives the number of excited states of a 
system of N (>0)  fermions (particles), or alternatively of N (<0)  anti- 
fermions (holes) distributed on the periodic single-particle spectrum {eke} 
with total energy E = nd= U + Eo, where U is the excitation energy and Eo 
the (exact) ground-state energy. The integral over y in (33) is the canonical 
partition function Q(N, fl) as given by (21). Therefore 

1 fc dr,,: tu-L~"~176 P ( N' U ) = 2-~i~ i o " " (34) 

with the ground-state energy shell effect Eshe,(0) given by (10). As mentioned 
above, this integral can be calculated exactly in many cases. However, for 
now, it is not necessary to give the exact formulas. 

As example of the number-theoretic aspects of the last results, consider 
again the case e = 1, i.e., equally spaced levels. Then, from (26) 

Z(ct, fl)= l--I (l+q2"y)(l+q2"+2y - ' ) =  ~ ~,, q'""-t'+2"y"p(m) 
n>~O m~O nEZ 

(35) 

Here p(m) denotes the number of partitions of the integer m into positive 
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integers. Clearly, p(N, m ) =  p(m) for N>~ m. The first values are p(N, m ) =  
1, 1,2, 3, 5, 7, 11, 15 ,22 ,30 ,42  .... f o r m = 0 , 1 , 2  ..... Asymptotically 

exp(n{ Ira6 + Eshc,(0)] 2e/36 },/2) 6 
p(N, m) "~ , E~he,(0) = -- 2"4 (36) 

4 x/~[m6 + E~hcu(0)] e/6 

More general spectra lead to many interesting problems in additive 
number theory. The asymptotic formula for p(N, m) in the general periodic 
case is obtainable using the saddle point method or Tauberian theorems. 
The result is given again by (36) but with E~h~,(0) from (10). 

4. THE SPECIFIC HEAT A N D  THE M A G N E T I C  SUSCEPTIB IL ITY  

Now it is possible to calculate explicitly the thermodynamic properties 
of the system. In this section, the electronic specific heat C and the 
electronic magnetic susceptibility X will be considered. These quantities are 
important for comparisons with experimental observations, c2' They are 
given by 

C=k~fl '-O~lnQ(U, fl), Z=fl- 'O'-nlnQ(N, fl) (37) 

In general, for arbitrary temperatures, magnetic fields, and periodic spectra, 
the use of our result (21) for Q(N, fl) is the simplest way for numerical 
calculations. This occurs because of the fast convergence of the oa-series for 
large Ira(r), i.e., relatively low temperatures. For higher temperatures the 
transformation formulas simplify the calculations again. 

For physical applications let us restrict the general periodic spectrum 
of the preceding section somewhat. Consider now only periodic shells of 
degenerate levels (subshelis) ~. In a weak static magnetic field H, we 
assume that each level splits into new levels ~; according to a certain 
scheme. Remember now that the levels of the preceding section were 
e,,i=6(n+ v i), j =  1 ..... e, with vj arbitrary. Thus, these numbers are to be 
selected as to reproduce the new levels e~ and therefore they will depend 
on H. For simplicity, we will consider only a linear dependence and write 
e,,j= 6(n + v j + lajH), where the redefined v j and the introduced /~j do not 
depend on H and ( p ) = 0 .  Quadratic and higher-order terms in H can be 
introduced easily. The consideration of a spin-orbit interaction using 
perturbation theory c-'5-261 leads to quadratic terms in H. 

From (22), the smooth, ground-state energy will be 

~,o/6 = e ( f +  x + ( v )  - 1/2) 2 - e/12 + e(v )/2 - e (v  2 )/2 

-- eH 2(/z 25/2 - eH(l~v ) (38) 

in which e(lav)=Y~laivi, i =  1 ..... e. 
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The P-function present in (21) can be now rewritten as 

0 , + , n . o ( 0 1 0 ~ ) = e x p ( ( l a ,  ~ )  H'-nir+ (p ,  a )  H2niz)0,.o(121trHIf2r ) (39) 

where the a i = v i -  ( v ) - x ,  i =  1 ..... e -  1, do not depend on H. 
The exponential  common  factor in Q(N, [3) gives no contribution to 

the specific heat. Therefore 

C = kB[3zO~[ --e In r/(r) + In O..o(f2rltH I O r ) ]  (40) 

For  the susceptibility one finds 

X = [3 - ' 3 ~  In 0. .o(f2rpH I f2z) (41) 

where we used ($1, ltt) = e ( p  z )  =Zla].  
From the definition (23a) for the P-functions, the quasiperiodicity rule 

0,.b(z + f2zm I Or)  = exp( - 2rrim'b - 2rtim'z - rrim'f2zm) 0.,b(Z [ Or),  

m e 77" - l (42) 

follows. Thus, the specific heat and the magnetic susceptibility are periodic 
functions of H. The period is given by the smallest h such that lah ~ 7: e -  J. 
This is possible if, for example, the level spacings in a subshell after 
splitting are constant  and rational multiples of the same energy unit for all 
subsheiis. However,  the situation is in general more complicated. 

Consider now the low-temperature  limit, i.e., large Im(r) .  For  the 
specific heat observe first the well-known result 

rr ir q -'" 
In r/(z) = -~-  - >~o n( 1 ~ q2,, ) , lm( r )  > 0 (43) 

Thus, the first term in (40) leads to an exponential  decrease exp(--6/kB T). 
But the second term leads also to a similar decrease as follows from (23a): 

C ~ ks[3Z62{e �9 e-P~ + �89 I + a + l l H )  2 - (n  o + a + lttH)) 

x exp[  - /36(<n ,  + a + l tH> - <no + a + laH> )/2] } 

where no and n~ are the values of n E Z"-  ' such that <n + a + laH> acquires 
its min imum value for n = n  o and for n = n ~  leads to the next larger value. 
If several n~ fulfil this condition, a degeneracy factor should be included. 
The result of Denton et aL ~s~ for e = 2 remains qualitatively valid for the 
general periodic spectra for all shell fillings. 

The susceptibility for low temperatures is also similar to that for e = 2. 
If the last occupied subshell ( o f  zero width) is closed, the susceptibility is 

822/75/1-2-20 
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exponentially attenuated. In the case that it is nonclosed, the susceptibility 
will follow a Curie law behavior. Note that also those systems with an even 
number of electrons in the last subshell will lead to a Curie law behavior, 
if the subshell is nonclosed. However, an odd-even effect could be still 
considered additionally since in the shell model this effect results from the 
pairing of electrons in the same shell. If a quadratic term in H is added 
to the subshell energies, then a nonvanishing susceptibility arises for even 
systems and a modified Curie law results for odd systems. Further, if a 
quadratic term in H is added to the subshell splittings, a nonvanishing 
susceptibility arises for even systems and a modified Curie law results for 
odd systems. 

In the high-temperature limit, Im(r)--*0. From (30) and (31) the 
expressions 

rti 
r/(z) = - ~ In r - "~z + O(e-"~/~) (44a) 

1 - e l n  0 " ~  r + O(const) (44b) 

9.0 

C/kn 

Y 0.0 
0.01 kt~T/6 0.7 

Fig. 1. Specific heat against kBT/6 at H = 0  for an equally spaced spectrum with fourfold 
degenerate levels. The top curve corresponds to a closed ground-state shell, the middle curve 
to 1/4- or 3/4-filled shells, and the bottom curve to half-filled shells. 
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result. Using these formulas, we arrive at the limits 

C= rt2k~ Te kB 
36 2 

(45a) 

and 

X = --a2s  = 6e<# 2 > (45b) 

Both expressions do not depend on the shell filling at the ground state, i.e., 
the shell effects have been washed out. The specific heat coincides with the 
result given by Denton et aL ~18~ if we substitute in their result the level 
density by el6. But the susceptibility given by (45b) differs in general from 
the Pauli spin susceptibility found by Denton et aL not only in the different 
single-particle level density. Of  course, for even e and p,.= +_g~itB/26 the 
Pauli susceptibility follows from (45b) with level density e/6. But in general 
the introduction of  the shell model assumptions could lead to different 
constants. 

In Fig. 1, the specific heat is shown as a function of the temperature 
at H =  0 for an equally spaced spectrum with fourfold degenerate levels. 

2.0 

•215 

0.0 

0.1 knT/6 0.7 

Fig. 2. The magnetic susceptibility against the temperature at H= 0 for an equally spaced 
spectrum with fourfold degenerate levels. The bottom curve is for closed shells, the middle 
curve for 1/4- or 3/4-filled shells, and the top curve for half-filled shells. 
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1.0 

C/kn 

o o " . , J  " ' , /  
0.0 •oH 2.0 

Fig. 3. The specific heat as a function of poll at a temperature k B T=  0.056 and a shell filling 
x = 1/4. The magnetic field dependence of part of the underlying fourfold degenerate spectrum 
is also shown. 

2.5 

•  

0.0 

0.5/0.25 

L 
0.0 

Fig. 4. 

0.0 0.25 0.5 0.0/0.25 0.5 0.25 0.0 0.5/0.25 

~ i ~ 

v.oH 2.0 
Same as Fig. 3, for the magnetic susceptibility. The values at the top give the shell 

fillings (x= 0, 0.25, and 0.5) of the respective peaks. 
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For the same spectrum, Fig. 2 shows the magnetic susceptibility at H =  0. 
In this last figure, the systems with partially filled ground-state shells can 
be clearly distinguished (Curie-law-type behavior) from the closed shell 
system (exponential attenuation for kB T---, 0). Finally, in Figs. 3 and 4 the 
magnetic field dependences for the specific heat and the magnetic suscep- 
tibility are shown for a temperature ka T =  0.056. The underlying straight 
lines show schematically some levels of the fourfold degenerate spectrum 
and its magnetic field dependence. For the specific heat only the shell filling 
x = 1/4 is shown for more clarity. 

5. S T A T I S T I C A L  LEVEL S P A C I N G  D I S T R I B U T I O N S  

As mentioned in the introduction, Kubo 1'31 and Gor'kov and 
Eliashberg ~15~ proposed to consider statistically distributed level spacings. 
Their motivation was the existence of surface irregularities as well as the 
presence of impurities. Having in mind an ensemble of small particles, 
it was argued that the resulting perturbations should be taken as 
uncorrelated. Then it was considered adequate to invoke the theory of 
random matrices 1"-7~ to average the single-particle level spacings near the 
Fermi level. Kubo performed the calculations with a Poisson distribution 
and Gor'kov and Eliashberg considered the so-called Gaussian ensembles. 

Denton et  al. ~8~ realized numerical calculations taking as zeroth-order 
approximation their equal-level-spacing results, the nth-order approxima- 
tion being defined as an average over n adjacent level spacings around the 
Fermi energy. They compared the three kinds of Gaussian ensembles. They 
found that the high-temperature limit approaches the equal-level-spacing 
results and the low-temperature behavior depends only on the low-lying 
states. 

It seems therefore natural to expect for the general periodic spectra a 
similar behavior following the same methods. However, the dependence on 
the shell structure needs to be analyzed carefully. In particular, for 
relatively small clusters we would expect that the perturbations would not 
wash out the original shell structure of the spectra as strongly as for very 
large systems. 

6. C O N C L U S I O N S  

The canonical partition function for a set of electrons in a periodic 
single-particle spectrum has been found exactly. The electronic specific heat 
and the electronic magnetic susceptibility were calculated. There are still 
many possibilities to fix the parameters which characterize the periodic 
spectra used. In principle, by letting the width of the periodic shell take a 
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sufficiently large value, any  k ind  of spec t rum (also nonpe r iod i c )  could  be 
s tudied for no t  too high tempera tures .  Cer ta in ly ,  it would  be of interest  to 
com pa re  the theoret ical  results with exper imenta l  data .  Also the cluster  
level densi ty  (34), (36) could  be i m p o r t a n t  for the s tudy  of excited clusters 
and  their  reac t ion  mechanisms .  

The  re la t ionsh ip  with ana ly t ic  n u m b e r  theory  wou ld  also be wor th  
fur ther  study. Addi t ional ly ,  the symmetr ies  associated with the symmet r ic  
b i l inear  form (18) an d  the canon ica l  pa r t i t ion  func t ion  (22) could  al low an  
in teres t ing l ink with affine K a c - M o o d y  algebras.  ~2~ 
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